Medical Datasets

10 Video Databases For Machine Learning For Free

You Should Know About These 10 Video Database For Machine Learning For Free

Machine LearningMachine Learning Machine Learning
Following on from the last two parts of the Machine Learning Video Datasets series, part three focuses on where to get the right picture dataset to train your Machine Learning models.
Following on from the last two parts of the Machine Learning dataset series, part three focuses on where to get the right Video Datasets to train your Machine Learning models.
On this page, you’ll find a number of datasets as well as links to portals where you may choose the best video datasets for your projects. Enjoy!

Here is the list of free 10 Video Datasets For Machine Learning

1. LSUN (http://lsun.cs.princeton.edu/2016/)
This dataset is useful for scene comprehension in conjunction with auxiliary task initiatives (room layout estimation, saliency prediction, etc.).
The massive Video Database, which includes photos from several rooms (as shown above), may be downloaded by going to the website and running the script supplied, which can be found here.
Scroll down below the scene classification’ heading and click ‘README’ to view the documentation
and demo code for additional information about the dataset.
Get Database: https://github.com/fyu/lsun/blob/master/download.py
2. ImageNet (http://video-net.org/)
The picture collection for new algorithms is organized according to the WordNet hierarchy, with hundreds of thousands of photos depicting each node of the network.
To download Video Database, you must first register on the site, then mouse over the ‘download’ menu dropdown and choose ‘original pictures.’ You can request access to the original pictures if you’re utilizing the datasets for educational or personal purposes.
Image Net is also hosting a competition on Kaggle right now – check it out here.
Get Database: http://video-net.org/
3. Labelme (http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php)
A big annotated Video Datasets may be found on this website.
However, downloading them is not simple. The dataset may be downloaded in two ways:
1. Using the LabelMe Matlab toolbox to download all of the pictures. You can customize the section of the datasetsyou wish to download using the toolbox.
2. Using the LabelMe Matlab toolbox to use the pictures from the internet. This is a less favored method since it is slower, but it allows you to see the Video Datasets before downloading it. After you’ve installed the database, you may read the annotation files and query the pictures with the LabelMe Matlab toolbox to extract specific items.
Get Database: http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
4. Indoor Scene Recognition (http://web.mit.edu/torralba/www/indoor.html)
As the name implies, this dataset of 15620 pictures contains diverse interior scenarios that fit into 67 indoor categories to aid in the training of your models.
Stores, residences, public areas, places of leisure, and working places are just a few of the categories these Video Datasets fall into, so you’ll have a broad selection of videos to utilize in your projects!
Get Database: http://groups.csail.mit.edu/vision/LabelMe/NewVideos/indoorCVPR_09.tar
5. Stanford Dogs Datasets(http://vision.stanford.edu/aditya86/VideoNetDogs/)
There are 20,580 pictures and 120 distinct dog breed categories in this collection.
This dataset from Stanford was created using pictures from Video Net and comprises photographs of 120 different dog breeds from across the world. For the goal of fine-grained picture classification, this dataset was created utilizing videos and annotation from Video Net.
Get Database: http://vision.stanford.edu/aditya86/VideoNetDogs/videos.tar
6. Labelled Faces In The Wild (http://vis-www.cs.umass.edu/lfw/)
This portal offers 13,000 annotated pictures of human faces that you may use in your facial recognition Machine Learning applications.
Simply click on the link below to access the dataset. You’ll see a sub-header labeled ‘Download the Database,’ where you may choose which file to download for use in your projects.
You won’t have to register or leave your information to access the Video Database, making it super simple to acquire the files you need and start working on your projects!
Get Database: http://vis-www.cs.umass.edu/lfw/#download
more like this, just click on: https://24x7offshoring.com/blog/
7. Google’s Open Videos (https://storage.googleapis.com/openvideos/web/download.html)
A total of 9 million pictures have been tagged with video-level labels and object bounding boxes in this dataset.
V4’s training set includes 14.6 million bounding boxes for 600 item types on 1.74 million pictures, making it the world’s biggest dataset containing object position annotations.
Fortunately, you won’t need to register or provide any personal information to access the dataset, allowing you to download it immediately from the website.
Get Database: https://storage.googleapis.com/openvideos/web/download.html
8. Visual Genome (http://visualgenome.org/)
This dataset gateway is a comprehensive visual knowledge base with captions for 108,077 Video Datasets ranging from people to buildings to signs and everything in between.
The following features are described on the website:
• 108,077 Photographs
• 5.4 MILLION DESCRIPTIONS OF REGIONS
• 1.7 MILLION ANSWERS TO VISUAL QUESTIONS
• 3.8 Million Instances of Objects
• There are 2.8 million attributes in the database.
• There are 2.3 million relationships in the world.
To get the datasets provided, you do not need to leave any information or register; simply click the link below to visit the website and download the objects, relationships, and aliases you require.
Get Database: http://visualgenome.org/api/v0/api_home.html
9. COIL100 (http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php)
The Columbia University Video Library collection contains 100 distinct things that have been photographed from every angle in a 360° rotation, ranging from toys to personal care items to tablets.
To get the dataset, you don’t need to register or provide any information on the website, making it a simple procedure. Simply click the link below to get the dataset in its entirety.
Get Database: http://www.cs.columbia.edu/CAVE/databases/SLAM_coil-20_coil-100/coil-100/coil-100.zip
10. MS COCO (http://mscoco.org/)
COCO is a large-scale dataset for detecting, segmenting, and labeling objects in context.
The dataset, as its name implies, comprises a wide range of everyday items that we see in our daily lives, making it suitable for training Machine Learning models.
The following aspects of the Video Datasets are described on the website:
Segmentation of objects
• In-context recognition
• Segmentation of superpixel items
• 330K pictures (>200K of which are labelled)
• 1.5 million instances of objects
• There are 80 different kinds of items to choose from.
• There are 91 different types of things.
• There are five captions per picture.
• 250,000 persons with important information
You will not be required to register or provide any personal information in order to access the dataset. You may either visit this page or use the links below to download them directly.
Get Database: http://videos.cocodataset.org/zips/train2014.zip
Continue Reading, just click on: https://24x7offshoring.com/blog/

Table of Contents